© Stanford University. 450 Serra Mall, Stanford, California 94305.· Terms of Use · Copyright Complaints

PETE

Nick Melosh 

Solar-energy conversion usually takes one of two forms: the ‘quantum’ approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the ‘thermal’ approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Photon-Enhanced Thermionic Emission (PETE) is a new concept for solar electricity generation, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature.

Image 1: Schematic of parallel-plate PETE device

Publications 

1. H, Riley DC, Shen Z-X, Pianetta PA, Melosh NA, & Howe RT, "Back-gated graphene anode for more efficient thermionic energy converters". Nano Energy 32, 67-72, 10.1016/j.nanoen.2016.12.027, 2017

 

2. Yuan H, Chang S, Bargatin I, Wang NC, Riley DC, Wang H, Schwede JW, Provine J, Pop E, Shen Z-X, Pianetta PA, Melosh NA, & Howe RT, "Engineering Ultra-Low Work Function of Graphene". 15, 6475-6480, 10.1021/acs.nanolett.5b01916,

                 

3. Lee J-H, Bargatin I, Vancil BK, Gwinn TO, Maboudian R, Melosh NA, & Howe RT, "Microfabricated Thermally Isolated Low Work-Function Emitter". Journal of Microelectromechanical Systems 23, 1182-1187, 10.1109/jmems.2014.2307882, 2014

                 

4. Littau KA, Sahasrabuddhe K, Barfield D, Yuan H, Shen Z-X, Howe RT, & Melosh NA, "Microbead-separated thermionic energy converter with enhanced emission current". Physical Chemistry Chemical Physics 15, 14442-14446, 10.1039/c3cp52895b, 2013

 

5. Schwede JW, Sarmiento T, Narasimhan VK, Rosenthal SJ, Riley DC, Schmitt F, Bargatin I, Sahasrabuddhe K, Howe RT, Harris JS, Melosh NA, & Shen ZX, "Photon-enhanced thermionic emission from heterostructures with low interface recombination". Nature Communications 4, 1576, 2013

 

6.  Lee J-H, Bargatin I, Melosh NA, & Howe RT, "Optimal emitter-collector gap for thermionic energy converters". Applied Physics Letters 100, 173904, 10.1063/1.4707379, 2012

7.  Sahasrabuddhe K, Schwede JW, Bargatin I, Jean J, Howe RT, Shen Z-X, & Melosh NA, "A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission". Journal of Applied Physics 112, 10.1063/1.4764106, 2012

 

8. Sahasrabuddhe K, Schwede JW, Bargatin I, Jean J, Howe RT, Shen ZX, & Melosh NA, "A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission". Journal of Applied Physics 112, 094907 (094910 pp.)-094907 (094910 pp.)094907 (094910 pp.), 10.1063/1.4764106, 2012

                 

9. Lee JH, Bargatin I, Provine J, Liu F, Seo MK, Maboudian R, Brongersma MLL, Melosh NA, Shen ZX, & Howe RT (2011) Effect of illlumination on thermionic emission from microfabricated silicon carbide structures. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pp 2658-2661.

 

10. Schwede JW, Bargatin I, Riley DC, Hardin BE, Rosenthal SJ, Sun Y, Schmitt F, Pianetta P, Howe RT, Shen Z-X, & Melosh NA, "Photon-enhanced thermionic emission for solar concentrator systems". Nature Materials 9, 762-767, 2010